6,085 research outputs found

    Constraining the Sub-AU-Scale Distribution of Hydrogen and Carbon Monoxide Gas around Young Stars with the Keck Interferometer

    Get PDF
    We present Keck Interferometer observations of T Tauri and Herbig Ae/Be stars with a spatial resolution of a few milliarcseconds and a spectral resolution of ~2000. Our observations span the K-band, and include the Br gamma transition of Hydrogen and the v=2-0 and v=3-1 transitions of carbon monoxide. For several targets we also present data from Keck/NIRSPEC that provide higher spectral resolution, but a seeing-limited spatial resolution, of the same spectral features. We analyze the Br gamma emission in the context of both disk and infall/outflow models, and conclude that the Br gamma emission traces gas at very small stellocentric radii, consistent with the magnetospheric scale. However some Br gamma-emitting gas also seems to be located at radii of >0.1 AU, perhaps tracing the inner regions of magnetically launched outflows. CO emission is detected from several objects, and we generate disk models that reproduce both the KI and NIRSPEC data well. We infer the CO spatial distribution to be coincident with the distribution of continuum emission in most cases. Furthermore the Br gamma emission in these objects is roughly coincident with both the CO and continuum emission. We present potential explanations for the spatial coincidence of continuum, Br gamma, and CO overtone emission, and explore the implications for the low occurrence rate of CO overtone emission in young stars. Finally, we provide additional discussion of V1685 Cyg, which is unusual among our sample in showing large differences in emitting region size and spatial position as a function of wavelength.Comment: Accepted for publication in MNRA

    Outflow 20--2000 AU from a High-Mass Protostar in W51-IRS2

    Full text link
    We present the results of the first high angular resolution observations of SiO maser emission towards the star forming region W51-IRS2 made with the Very Large Array (VLA) and Very Long Baseline Array (VLBA). Our images of the water maser emission in W51-IRS2 reveal two maser complexes bracketing the SiO maser source. One of these water maser complexes appears to trace a bow shock whose opening angle is consistent with the opening angle observed in the distribution of SiO maser emission. A comparison of our water maser image with an image constructed from data acquired 19 years earlier clearly shows the persistence and motion of this bow shock. The proper motions correspond to an outflow velocity of 80 km/s, which is consistent with the data of 19 years ago (that spanned 2 years). We have discovered a two-armed linear structure in the SiO maser emission on scales of ~25 AU, and we find a velocity gradient on the order of 0.1 km/s/AU along the arms. We propose that the SiO maser source traces the limbs of an accelerating bipolar outflow close to an obscured protostar. We estimate that the outflow makes an angle of <20 degrees with respect to the plane of the sky. Our measurement of the acceleration is consistent with a reported drift in the line-of-sight velocity of the W51 SiO maser source.Comment: 19 pages, 5 figures (including 3 color). Accepted for publication in ApJ (April 1, 2001 issue

    First L-band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419

    Get PDF
    We present spatially-resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85-m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 microns wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power-law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br gamma emission line. The measured disk size at and around Br gamma suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.Comment: Accepted for publication in Ap

    Interferometric Observations of V838 Monocerotis

    Full text link
    We have used long-baseline near-IR interferometry to resolve the peculiar eruptive variable V838 Mon and to provide the first direct measurement of its angular size. Assuming a uniform disk model for the emission we derive an apparent angular diameter at the time of observations (November-December 2004) of 1.83±0.061.83 \pm 0.06 milli-arcseconds. For a nominal distance of 8±28\pm2 kpc, this implies a linear radius of 1570±400R⊙1570 \pm 400 R_{\odot}. However, the data are somewhat better fit by elliptical disk or binary component models, and we suggest that the emission may be strongly affected by ejecta from the outburst.Comment: 12 pages, 1 two-part encapsulated postscript figure. Accepted by ApJL. Added a table of observation

    Massive Protoplanetary Disks in the Trapezium Region

    Full text link
    (abridged) We determine the disk mass distribution around 336 stars in the young Orion Nebula cluster by imaging a 2.5' x 2.5' region in 3 mm continuum emission with the Owens Valley Millimeter Array. For this sample of 336 stars, we observe 3 mm emission above the 3-sigma noise level toward ten sources, six of which have also been detected optically in silhouette against the bright nebular background. In addition, we detect 20 objects that do not correspond to known near-IR cluster members. Comparisons of our measured fluxes with longer wavelength observations enable rough separation of dust emission from thermal free-free emission, and we find substantial dust emission toward most objects. For the ten objects detected at both 3 mm and near-IR wavelengths, eight exhibit substantial dust emission. Excluding the high-mass stars and assuming a gas-to-dust ratio of 100, we estimate circumstellar masses ranging from 0.13 to 0.39 Msun. For the cluster members not detected at 3 mm, images of individual objects are stacked to constrain the mean 3 mm flux of the ensemble. The average flux is detected at the 3-sigma confidence level, and implies an average disk mass of 0.005 Msun, comparable to the minimum mass solar nebula. The percentage of stars in Orion surrounded by disks more massive than ~0.1 Msun is consistent with the disk mass distribution in Taurus, and we argue that massive disks in Orion do not appear to be truncated through close encounters with high-mass stars. Comparison of the average disk mass and number of massive dusty structures in Orion with similar surveys of the NGC 2024 and IC 348 clusters constrains the evolutionary timescales of massive circumstellar disks in clustered environments.Comment: 27 pages, including 7 figures. Accepted by Ap
    • …
    corecore